

AlphaFold初级介绍

张少庆 2022/4/3

Credit to online resources.

Mastermind

- **Demis Hassabis** CBE FRS FREng FRSA (1976-).
- Became master of chess at 13.
- Self-taught programming.
- Designed video games.
- B.A. from Cambridge in computer science at 21.
- Game designer again.
- Research on hippocampal amnesia ranked top 10 breakthroughs by the Science magazine (at 31).
- Ph.D. from UCL in cognitive neuroscience at 33.
- Co-founded DeepMind at 34.

Credit: Royal Academy of Engineering

DeepMind

- Founded by Hassabis, Shane Legg & Mustafa Suleyman in 2010.
- Firstly artificial intelligence technology on how to play old games.
- To create a general-purpose AI useful and effective for almost anything.
- Invested by many people, including Elon Musk.
- Acquired by Google for £400m in 2014.
- Products: AlphaGo, AlphaZero, AlphaStar, AlphaFold & AlphaCode.
- Technologies: new AI algorithms, text-to-speech system, etc.

ALPHAGO

A DOCUMENTARY • SPRING 2017

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Citation: 12573

Nature, 28 January 2016

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

Nature, 19 October 2017

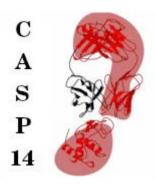
AlphaFold Lead

- John M. Jumper (198?-).
- B.S. in physics & math at Vanderbilt.
- Self-taught programming.
- Studied condensed matter physics at Cambridge (1y).
- Worked on protein folding simulation at D. E. Shaw.
- Obtained Ph.D. (2017) with Karl Freed and Tobin Sosnick at Uchicago by predicting folding dynamics.
- Joined DeepMind (2017) and started working on AlphaFold.

Credit: Vanderbilt Univ.

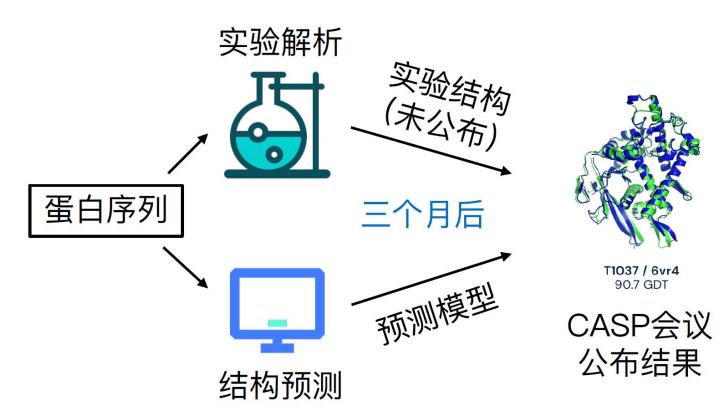
Jumper's publications before joining DeepMind

- Joshua A Riback, Micayla A Bowman, Adam M Zmyslowski, Catherine R Knoverek, John M Jumper, James R Hinshaw, Emily B Kaye, Karl F Freed, Patricia L Clark, Tobin R Sosnick, Science 358 (6360), 238-241 (2017).
- JM Jumper, KF Freed, TR Sosnick, **bioRxiv**:169326 (2017).
- <u>JM Jumper</u>, KF Freed, TR Sosnick, **arXiv**:1610.07277 (2016).
- JF Zimmerman, GF Murray, Y Wang, <u>JM Jumper</u>, JR Austin, B Tian, Nano letters 15 (8), 5492-5498 (2015).
- MC Baxa, EJ Haddadian, <u>JM Jumper</u>, KF Freed, TR Sosnick, Proceedings of the National Academy of Sciences 111 (43), 15396-15401 (2014).
- MP Eastwood, T Chitra, <u>JM Jumper</u>, K Palmo, AC Pan, DE Shaw, The Journal of Physical Chemistry B 117 (42), 12898-12907 (2013).
- Yibing Shan, Michael P Eastwood, Xuewu Zhang, Eric T Kim, Anton Arkhipov, Ron O Dror, John Jumper, John Kuriyan, David E Shaw, Cell 149 (4), 860-870 (2012).
- David E Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, Michael P Eastwood, Joseph A Bank, <u>John M Jumper</u>, John K Salmon, Yibing Shan, Willy Wriggers, Science 330 (6002), 341-346.



CASP

Critical Assessment of protein Structure Prediction, 1994



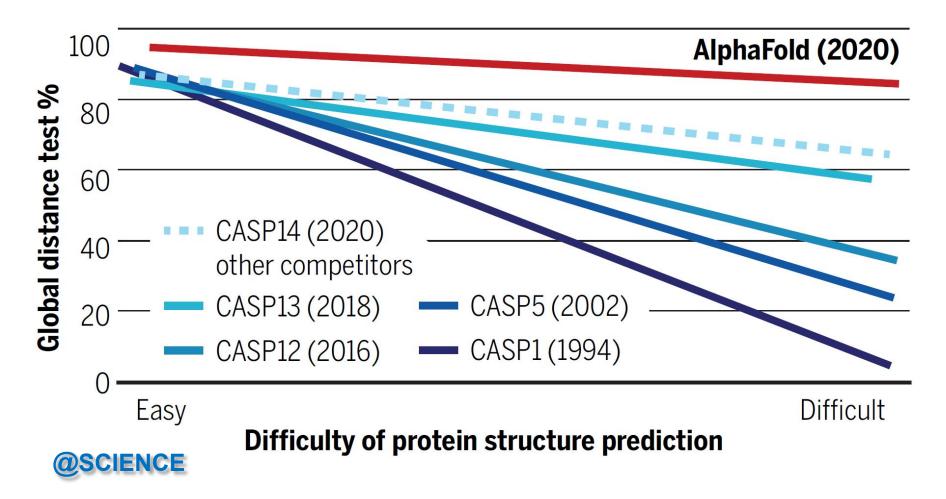
评估计算机预测蛋白质结构方法的准确度

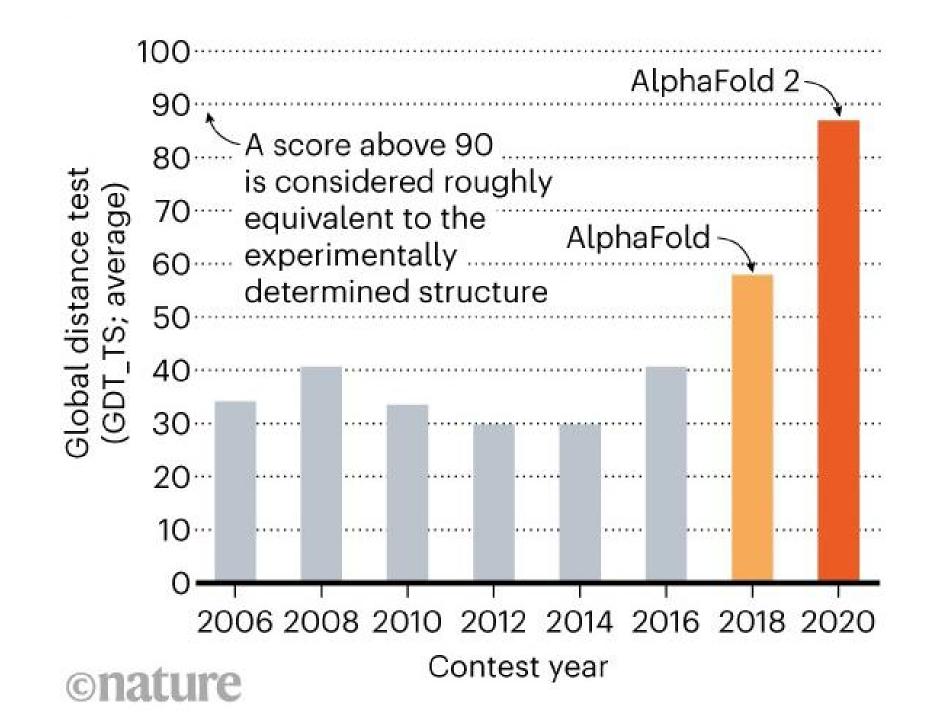
<u>Critical Assessment of protein Structure Prediction</u> (CASP)

- An international competition on protein structure prediction biennially since 1994
- CASP14 takes place in 2020
- More than 200 groups participated in CASP14, including labs from academia and industry
- Baidu, Tencent and Huawei also participated
- The ultimate winner is the group AlphaFold2 from Google's Al department DeepMind

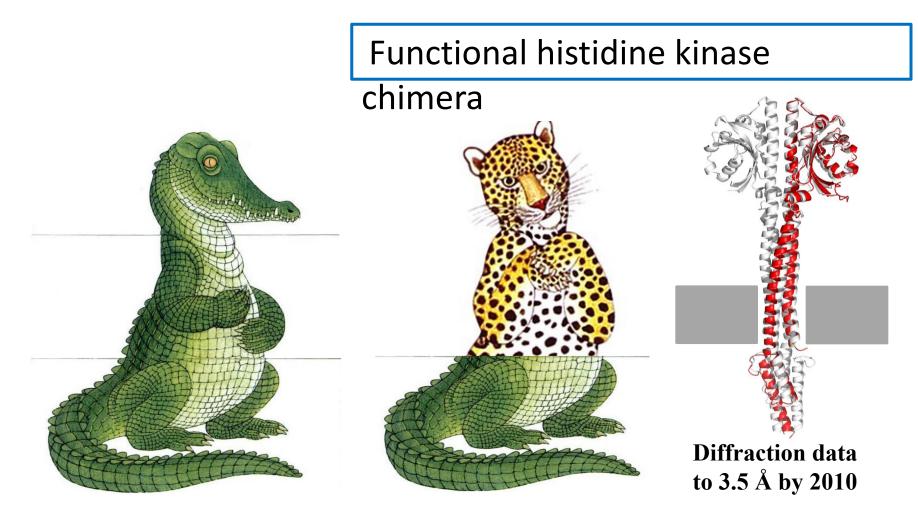
Getting real

At the Critical Assessment of Protein Structure Prediction (CASP) competition, AlphaFold matched experimental findings on a measure of accuracy.





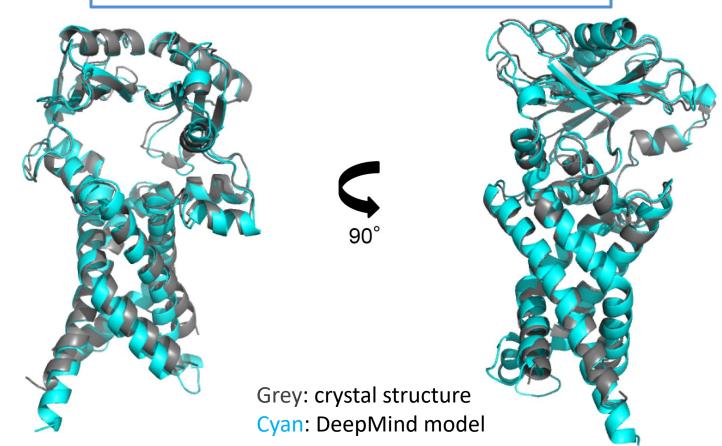
Membrane protein structures are correctly predicted AlphaFold2!



by Andrei N. Lupas @Max Planck Institute

Another membrane protein structure correctly predicted by AlphaFold2

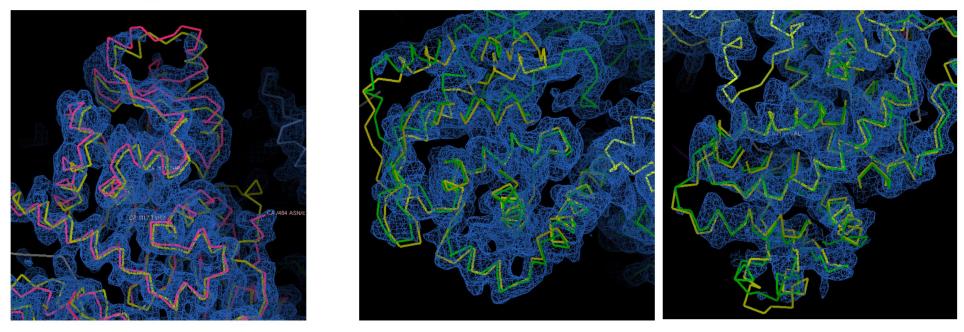
Inner membrane reductase FoxB



DeepMind models used for cryoEM

gp105

gp226



DeepMind model (yellow) is fitted into the cryoEM map.

DeepMind solves 50-year-old 'grand challenge' with protein folding A.I.

PUBLISHED MON, NOV 30 2020-10:30 AM EST | UPDATED MON, NOV 30 2020-10:07 PM EST

12-14-20

DeepMind's latest Al breakthrough could turbocharge drug discovery

Creating new drugs is notoriously slow and expensive. AlphaFold's ability to understand proteins could help researchers move much faster.

Protein Folding Breakthrough: Evolution or Design?

Evolution News@DiscoveryCSCDecember 16, 2020, 6:13 AM

The AlphaFold2 Method Paper: A Fount of Good Ideas

-**Mohammed AlQuraishi**, Columbia University https://moalquraishi.wordpress.com/2021/07/25/the-alphafold2-method-paper-afount-of-good-ideas/

"What is impressive about the AF2 effort is not top-notch hardware, but top-notch software and ML engineering that renders brute-force scaling unnecessary. This part I suspect will be hardest for academia to replicate, because it is less about increased national investment in computing resources (which would undoubtedly help) and more about in-house professional software engineering capacity, a much taller order.

... on the whole, their culture appears to be one of **computational frugality**, in the best sense of the word, and quite possibly **the biggest compliment** I can give the AF2 team on an achievement that is remarkable in so many other ways."

AlphaFold Improved protein structure prediction using potentials from deep learning

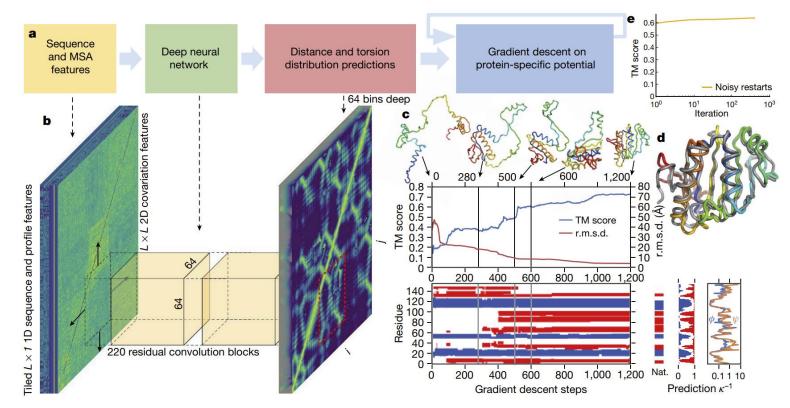
https://doi.org/10.1038/s41586-019-1923-7

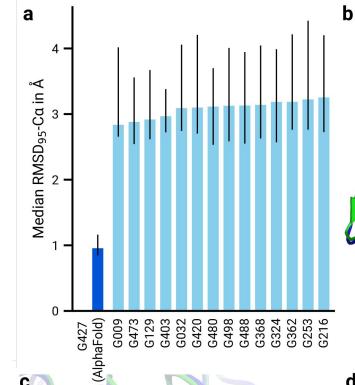
Received: 2 April 2019

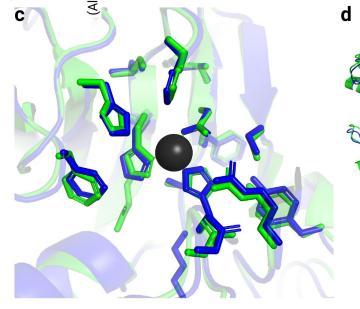
Accepted: 10 December 2019

Published online: 15 January 2020

Andrew W. Senior^{1,4}*, Richard Evans^{1,4}, John Jumper^{1,4}, James Kirkpatrick^{1,4}, Laurent Sifre^{1,4}, Tim Green¹, Chongli Qin¹, Augustin Žídek¹, Alexander W. R. Nelson¹, Alex Bridgland¹, Hugo Penedones¹, Stig Petersen¹, Karen Simonyan¹, Steve Crossan¹, Pushmeet Kohli¹, David T. Jones^{2,3}, David Silver¹, Koray Kavukcuoglu¹ & Demis Hassabis¹







T1056 (6yj1) – AlphaFold / experiment RMSD: 0.59 Å within 8 Å of Zn T1044 – AlphaFold / experiment RMSD₉₅: 2.2 Å, TM-score: 0.96

N-terminus

T1049 - AlphaFold / experiment

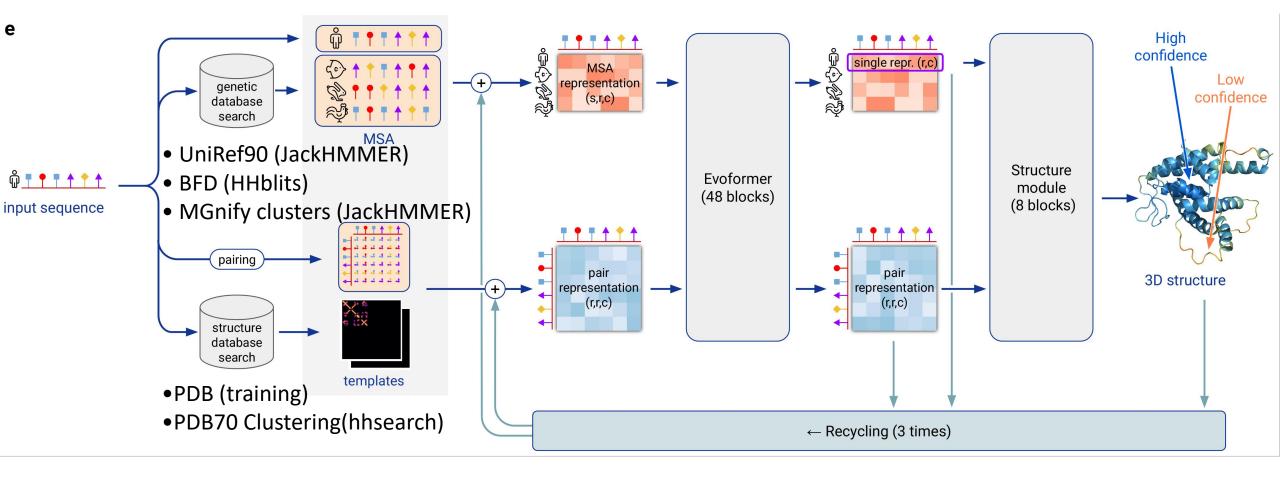
RMSD₉₅: 0.8 Å, TM-score: 0.93

C-terminus

AlphaFold2

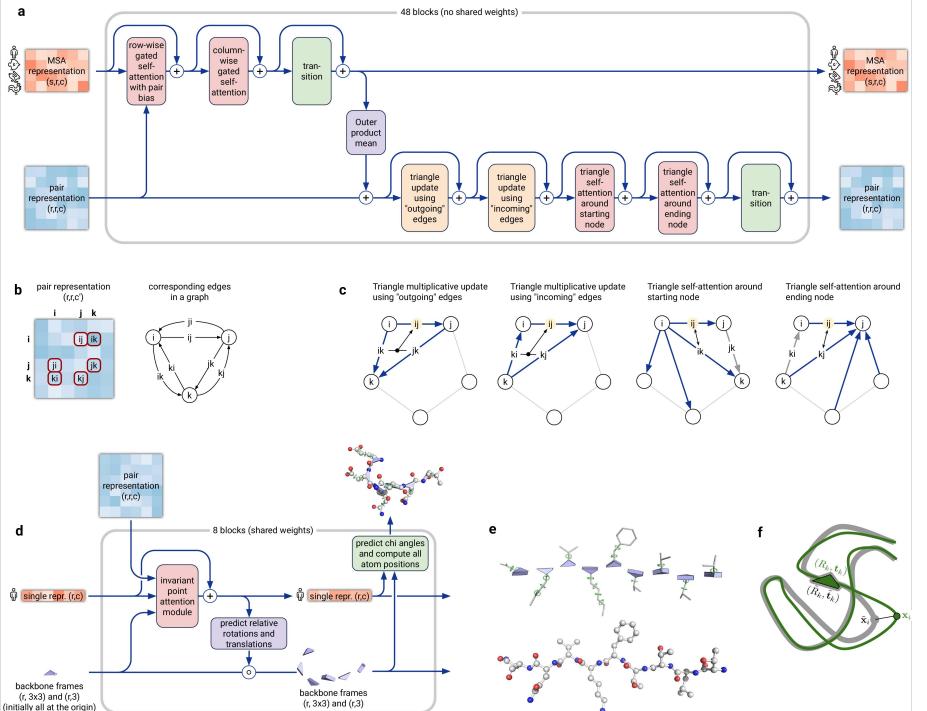
Highly accurate protein structure prediction with AlphaFold, Nature, 15 July 2021. https://doi.org/10.1038/s41586-021-03819-2

John Jumper ^[], Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis ^[] -

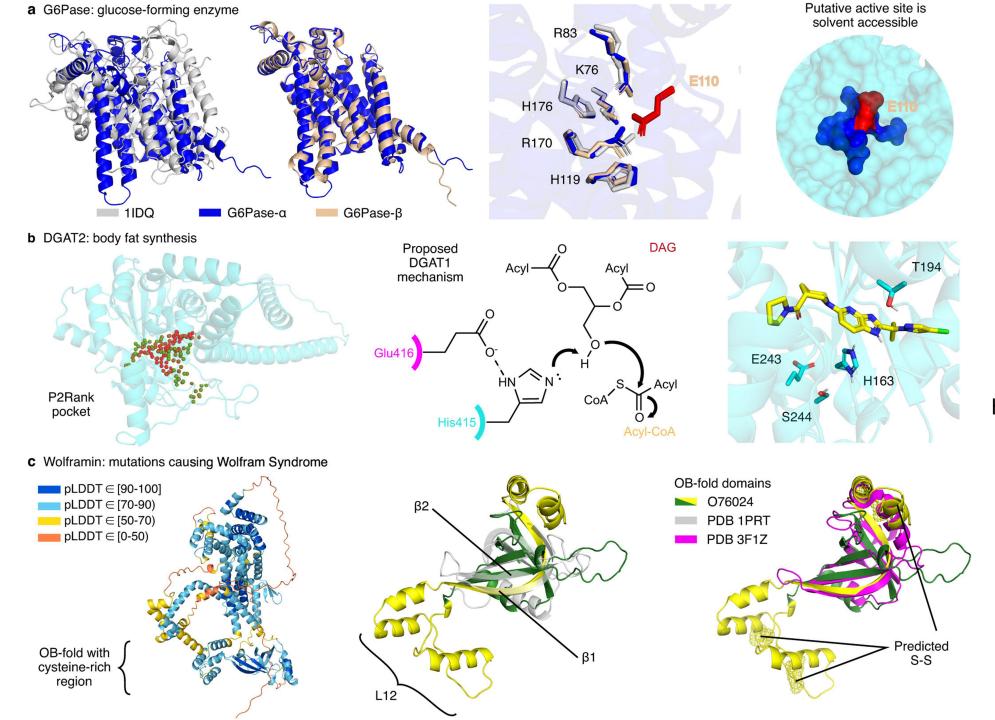


Highly accurate protein structure prediction with AlphaFold,

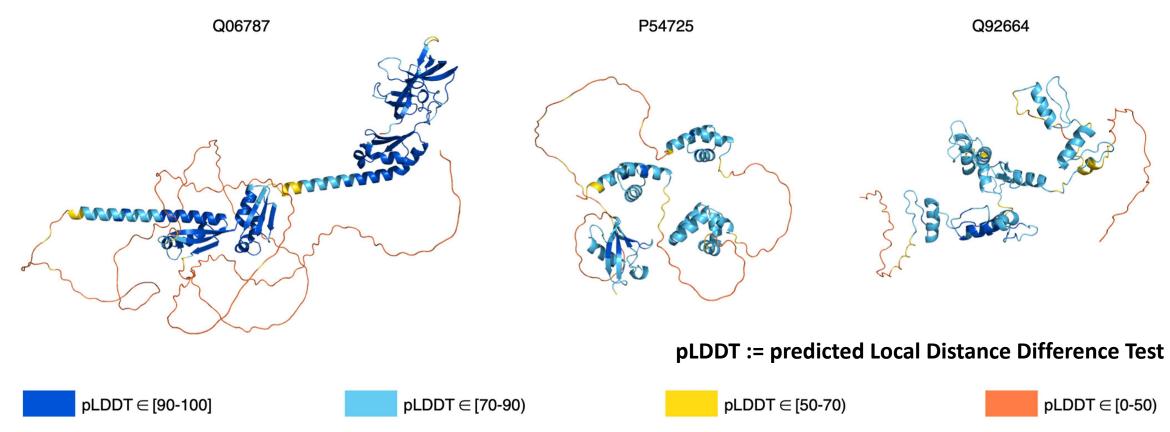
Nature, https://doi.org/10.1038/s41586-021-03819-2



Highly accurate protein structure prediction with AlphaFold, Nature, https://doi.org/10.1038 /s41586-021-03819-2



Highly accurate protein structure prediction for the human proteome, Nature, 22 July 2021. https://doi.org/10.1038/ s41586-021-03828-1



•Regions with **pLDDT >= 90** are expected to be **modelled to high accuracy**. These should be suitable for any application that benefits from high accuracy (e.g. characterising binding sites).

Regions with 70 <= pLDDT < 90 are expected to be modelled well (a generally good backbone prediction).
Regions with 50 <= pLDDT < 70 are low confidence and should be treated with caution.

•The 3D coordinates of regions with **pLDDT < 50** often has **a reasonably strong predictor of disorder**, i.e. it

suggests such a region is either unstructured in physiological conditions or only structured as part of a complex.

Highly accurate protein structure prediction for the human proteome, Nature, 2021. https://doi.org/10.1038/s41586-021-03828-1

Running AlphaFold on your own

https://github.com/deepmind/alphafold

Hardware required:

- Download genetic databases Total: ~ 2.2 TB (download: 428 GB)
- Download model parameters (3.5 GB)

•Computational resources (i.e. GPU) required:

On 1 16-GB V100, 256 AA for 4.8 min, 384 AA for 9.2 min, 2500 AA for 18 hr

•Large proteins need more computer memories:

The limit for 1 V100 is about 1300 AA. 4 V100s is optimal for 2500 AA

Martin Steinegger (AlphaFold Coauthor) and Sergey Ovchinnikov realized AlphaFold on Google Colaboratory

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb

or <u>colabfold.com</u>

O

Input protein sequence here before you "Run all"
query_sequence: MAKTIKITQTRSAIGRLPKHKATLLGLGLRRIGHTVEREDTPAIRGMINAVSFMVKVEE
jobname: "RL30_ECOLI
Advanced settings
num_models: 5
msa_mode: MMseqs2
use_amber:
use_templates:

79 AA for 7 min

Video tutorial https://www.bilibili.com/video/BV1kY411W7Tu

AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI

Search for protein, gene, UniProt accession or organism BETA								:h
Examples:	Free fatty acid receptor 2	At1g58602	Q5VSL9	E. coli	Help:	AlphaFold DB search help		

Highly accurate protein structure prediction for the human proteome, Nature, 2021. https://doi.org/10.1038/s41586-021-03828-1

https://www.alphafold.ebi.ac.uk/

Species	Common Name	Reference Proteome	Predicted Structures	Download
Arabidopsis thaliana	Arabidopsis	UP000006548 🗹	27,434	Download (3642 MB)
Caenorhabditis elegans	Nematode worm	UP000001940 🗹	19,694	Download (2601 MB)
Candida albicans	C. albicans	UP000000559 🗗	5,974	Download (965 MB)
Danio rerio	Zebrafish	UP000000437 🗗	24,664	Download (4141 MB)
Dictyostelium discoideum	Dictyostelium	UP000002195 🗗	12,622	Download (2150 MB)
Drosophila melanogaster	Fruit fly	UP00000803 🗗	13,458	Download (2174 MB)
Escherichia coli	E. coli	UP00000625 🗹	4,363	Download (448 MB)
Glycine max	Soybean	UP000008827 🗗	55,799	Download (7142 MB)
Homo sapiens	Human	UP000005640 🗹	23,391	Download (4784 MB)
Leishmania infantum	L. infantum	UP00008153 🗗	7,924	Download (1481 MB)
Methanocaldococcus jannaschii	M. jannaschii	UP00000805 🗹	1,773	Download (171 MB)
Mus musculus	Mouse	UP00000589 🗹	21,615	Download (3547 MB)
Mycobacterium tuberculosis	M. tuberculosis	UP000001584 🗹	3,988	Download (421 MB)
Oryza sativa	Asian rice	UP000059680 🗹	43,649	Download (4416 MB)
Plasmodium falciparum	P. falciparum	UP000001450 🗗	5,187	Download (1132 MB)
Rattus norvegicus	Rat	UP000002494 🗹	21,272	Download (3404 MB)
Saccharomyces cerevisiae	Budding yeast	UP000002311 🗗	6,040	Download (960 MB)
Schizosaccharomyces pombe	Fission yeast	UP000002485 🗹	5,128	Download (776 MB)
Staphylococcus aureus	S. aureus	UP000008816 🗹	2,888	Download (268 MB)
Trypanosoma cruzi	T. cruzi	UP000002296 🗹	19,036	Download (2905 MB)
Zea mays	Maize	UP000007305 🗗	39,299	Download (5014 MB)

< 2700 AA

Great expectations—the potential impacts of AlphaFold DB

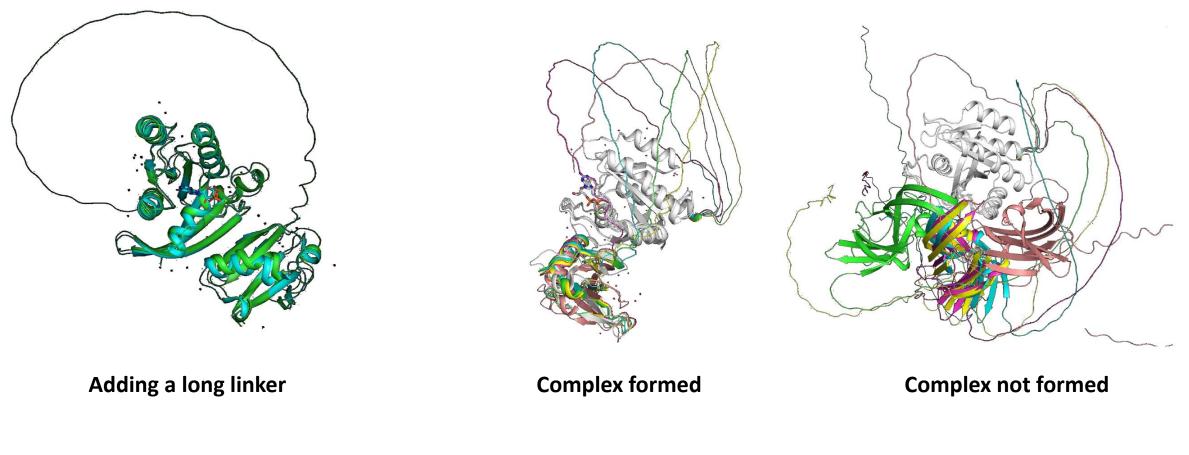
https://www.embl.org/news/science/alphafold-potential-impacts/

"The initial release of AlphaFold DB contains over **350,000 structures** which will eventually increase to an estimated 130 million 3D models (around 700 times more than currently in the PDB). The functionality of the website will also continuously be improved and extended." **Currently 992,316 structures.**

Limitations:

- No prediction for 3D structures for protein-protein or protein-DNA/RNA/ligand complexes.
- No predictions for conformational dynamics of proteins.
- Low-confidence prediction for **disordered regions** and no claim to predict the 'folding pathway'.
- Not trained or validated for predicting the effect of mutations.
- No structure prediction for cofactors, metals, ligands including drug-like \bullet molecules, ions, carbohydrates and other post-translational modifications.

AlphaFold for protein complexes



https://twitter.com/thesteinegger/status/141573701563976 4995?s=05

Protein complexes

colabfold.com

Mode 1

Query_sequence: Sequence1:Sequence2

• "auto" = protein structure prediction using "AlphaFold2-ptm" and complex prediction "AlphaFold-multimer-v2". For complexes "AlphaFold-multimer-v[1,2]" and "AlphaFold-ptm" can be used.

Mode 2

Mode 3

Protein complex prediction with bi AlphaFold-Multimer

bioRxiv 2021.10.04.463034

Richard Evans^{1*}, Michael O'Neill^{1*}, Alexander Pritzel^{1*}, Natasha Antropova^{1*}, Andrew Senior¹, Tim Green¹, Augustin Žídek¹, Russ Bates¹, Sam Blackwell¹, Jason Yim¹, Olaf Ronneberger¹, Sebastian Bodenstein¹, Michal Zielinski¹, Alex Bridgland¹, Anna Potapenko¹, Andrew Cowie¹, Kathryn Tunyasuvunakool¹, Rishub Jain¹, Ellen Clancy¹, Pushmeet Kohli¹, John Jumper^{1*} and Demis Hassabis^{1*}

https://cosmic-cryoem.org/tools/alphafoldmultimer/

Homooligomers

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb

Wide acceptance

- AlphaFold2 paper cited 2127 times on Google Scholar.
- AlphaFold2 Proteome paper cited 413 times.
- ColabFold print cited 144 times.
- AlphaFold-multimer preprint cited 83 times.
- Many labs reproducing AlphaFold2 for various purposes.
- Applications in structures of proteins and protein complexes.

Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization

PNAS, 119 (11) e2122954119 (2022)

AlphaFold Accelerates Artificial Intelligence Powered Drug Discovery: Efficient Discovery of a Novel Cyclin-dependent Kinase 20 (CDK20) Small Molecule Inhibitor

arXiv:2201.09647

AlphaDrug?

AlphaDesign?

AlphaDynamics?

QUANTUM CHEMISTRYScience. 2021 Dec 10;374(6573):1385-1389.Pushing the frontiers of density functionalsby solving the fractional electron problem

James Kirkpatrick¹*⁺, Brendan McMorrow¹⁺, David H. P. Turban¹⁺, Alexander L. Gaunt¹⁺, James S. Spencer¹, Alexander G. D. G. Matthews¹, Annette Obika¹, Louis Thiry², Meire Fortunato¹, David Pfau¹, Lara Román Castellanos¹, Stig Petersen¹, Alexander W. R. Nelson¹, Pushmeet Kohli¹, Paula Mori-Sánchez³, Demis Hassabis¹, Aron J. Cohen^{1,4}*

Magnetic control of tokamak plasmas through deep reinforcement learning

Al works by DeepMind

Received: 14 July 2021

cocived. 14 July 2021

Accepted: 1 December 2021

Published online: 16 February 2022

https://doi.org/10.1038/s41586-021-04301-9

Open access

Jonas Degrave^{1,3}, Federico Felici^{2,3}, Jonas Buchli^{1,3}, Michael Neunert^{1,3}, Brendan Tracey^{1,3}, Francesco Carpanese^{1,2,3}, Timo Ewalds^{1,3}, Roland Hafner^{1,3}, Abbas Abdolmaleki¹, Diego de las Casas¹, Craig Donner¹, Leslie Fritz¹, Cristian Galperti², Andrea Huber¹, James Keeling¹, Maria Tsimpoukelli¹, Jackie Kay¹, Antoine Merle², Jean-Marc Moret², Seb Noury¹, Federico Pesamosca², David Pfau¹, Olivier Sauter², Cristian Sommariva², Stefano Coda², Basil Duval², Ambrogio Fasoli², Pushmeet Kohli¹, Koray Kavukcuoglu¹, Demis Hassabis¹ & Martin Riedmiller^{1,3}

Nature. 2022 Feb;602(7897):414-419.

Restoring and attributing ancient texts using deep neural networks

https://doi.org/10.1038/s41586-022-04448-z

Received: 16 August 2021

Accepted: 19 January 2022

Published online: 9 March 2022

Yannis Assael^{1,6}, Thea Sommerschield^{2,3,6}, Brendan Shillingford¹, Mahyar Bordbar¹, John Pavlopoulos⁴, Marita Chatzipanagiotou⁴, Ion Androutsopoulos⁴, Jonathan Prag⁵ & Nando de Freitas¹

Nature. 2022 Mar;603(7900):280-283.